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Abstract. 

Property contribution tensors constitute basic building blocks for evaluation of effective 

properties of heterogeneous materials. Most of the existing results, however, are obtained for 

inhomogeneities of simple shapes, like ellipsoidal. With this paper we introduce open access 

software that allows one to calculate the components of compliance and stiffness contribution 

tensors of inhomogeneities of any shape. The software uses mesh free method based on a class of 

Gaussian approximating functions. Here we present details of the method and illustrate it by 

several examples. The software can be downloaded from the website of NMSU Center for 

Micromechanics https://centerformichromechanics.nmsu.edu. 

1. Introduction. 

Compliance and stiffness contribution tensors are used in micromechanics for quantitative 

characterization of the effect of individual inhomogeneities on the overall elastic properties. 

Compliance contribution tensor has been first introduced in the context of ellipsoidal pores and 

cracks by Horii and Nemat-Nasser [1] (see also detailed discussion in the book of Nemat-Nasser 

and Hori [2]) who also explicitly expressed its components in terms of Eshelby tensor. Kachanov 

et al [3] calculated this tensor for a variety of non-elliptical 2D shapes using method of 

conformal mappings. For general case of ellipsoidal inhomogeneities in an isotropic media, these 

tensors were calculated by Sevostianov and Kachanov [4], [5]. Sevostianov et al. [6] calculated 

components of this tensor for a spheroidal inhomogeneity embedded in a transversely isotropic 

material. Kushch and Sevostianov [7] established the link between compliance contribution 

tensor and dipole moments. These results are obtained for ellipsoidal inhomogeneities in terms of 

Eshelby tensor (Eshelby [8], [9]; Mura [10]). We have to point out, however, that, for non-

ellipsoidal inhomogeneities, this link is lost. Eshelby tensor is irrelevant for the problem of 

effective properties of heterogeneous material with non-ellipsoidal inhomogeneities, and 

compliance contribution tensor, therefore, has to be calculated independently. 



While for non-elliptical inhomogeneities in 2D settings many analytical and numerical 

results have been obtained by conformal mapping (see Zimmerman [11]; Kachanov et al. [3]; 

Jasiuk et al. [12]; Tsukrov and Novak [13], [14]; Ekneligoda and Zimmerman [15], [16]), only a 

limited number of numerical results and approximate estimates are available for non-ellipsoidal 

3D shapes. In 3D, the problem of the elastic fields associated with an inhomogeneity of 

‘‘irregular” (non-ellipsoidal) shape reduces to an integral equations and generally requires 

computational approaches (although, in some cases, solution can be obtained in the form of 

infinite series, see results of Argatov and Sevostianov [17] and Krasnitskii et al. [18] for thin and 

regular rigid toroids). 

 Compliance contribution tensors for several examples of pores of irregular shape typical for 

carbon-carbon composites have been calculated by Drach et al. [19] using FEM. The authors 

give the values of the components of compliance contribution tensors for several specific shapes 

(Tables 1 and 2 in their paper), but did not discuss effect of any particular irregularity factor. 

Compliance contribution tensors of concave pores of various shape have been calculated by 

Sevostianov et al. [20], Sevostianov and Giraud [21], Chen et al. [22], Sevostianov et al. [23],  

Chen et al. [24], Trofimov et al. [25] and Markov et al. [26]. Stiffness contribution tensors have 

been evaluated for particles of various polyhedral shape by Trofimov et al. [27]; for helical fibers 

– by Trofimov and Sevostianov [28] and Trofimov et al. [29]. 

 In the narrower context of irregularly shaped cracks, certain results were obtained for 

compliance contribution tensors by Fabrikant [30], Sevostianov and Kachanov [5] (planar cracks 

of non-elliptical shape), Grechka et al. [31] (intersecting planar cracks), Mear et al. [32] (non-

planar cracks), and Kachanov and Sevostianov [33] (2012) (cracks growing from pores); 

Trofimov et al. [34], Markov et al. [35], Markov et al. [36] (various configurations of planar and 

non-planar cracks with islands of contact). 

 Rasool and Böhm [37] and Böhm and Rasool [38] analyzed shape effects on the effective 

elastic and thermal properties of the composites containing randomly oriented and distributed 

spherical, octahedral, cubical and tetrahedral particles. Drach et al. [39] proposed to evaluate 

effect of pores of irregular shape on the overall elastic moduli using pore projected areas. This 

approach works well for prediction of the overall Young’s moduli in different directions. Drach 

et al. [40] performed a comprehensive numerical analysis of the pore shape on the overall 

properties of solids with porosity levels up to 25%. An alternative approach consists of direct 



computation of stress and strain fields for a given (deterministic) microstructure by discretizing 

the domain and using the FEM, and then post-processing the averages of the stress and strain 

fields (see, for example, Roberts and Garboczi [41], [42]; Arns et al. [43]; Garboczi and Douglas 

[44]).  

The problem faced by the currently available computational tools is that they are generally 

not all openly available and, more importantly, there is no general software package comprising 

all software packages necessary to calculate contributions of the inhomogeneities into overall 

elastic properties. At last, the available tools do not have the accuracy and the functionalities 

needed to calculate property contribution tensors, required by the homogenization methods. 

Consequently, newcomers must spend much time to get used to the problem, handle 

incompatibilities of definitions, and gather different tools to achieve each task. As a result, each 

team working in the area of micromechanics has developed its own tools. This has scattered the 

efforts instead of focusing them on the development of generic software suited for everyone. 

With this paper, we introduce a new open access software package named AMAT that 

implements the mesh free numerical method based on a class of Gaussian approximating 

functions. The theory of approximation by these functions was developed by Maz’ya and 

Schmidt [45]. The problem is formulated in terms of integral equations for stress or strain fields 

in the case of 3D inhomogeneities (Kanaun [46]) or displacement discontinuity in the case of 2D 

ones (cracks) (Kanaun [47]). For discretization of these equations, a class of Gaussian 

approximating functions centered at the nodes of regular node grids is used; thus, the system of 

linear equations is formed in a very efficient way (Kanaun and Markov [48]). It should be noted 

that although commercial FEM-based software (see, e.g., Babaii [49]) present certain 

advantages, as well-tested solvers and graphical post-processors; this type of software is not 

well-suited for the modeling of infinite media and 2D shapes (see, e.g., Trofimov et al. [25]). 

The paper is structured as follows: in Section 2, we follow Kachanov and Sevostianov [50] 

and define compliance and stiffness contribution tensors for an inhomogeneity. Section 3 focuses 

on the computational method used for evaluation of these tensors. In Section 4, we explain how 

the software can be run. Section 5 contains several examples of the calculations. We first start, of 

course, with the example of a spheroid, for which the exact result can be expressed in elementary 

functions. Then we discuss more complex shapes.  

 



2. Background material: property contribution tensors. 

In the context of the elastic properties, the average, over a representative volume element 

(RVE) V  strain can be represented as a sum  

 0 0 ε S :σ ε , (2.1) 

where 
0

S  is the compliance tensor of the matrix and 
0
σ  represents the uniform boundary 

conditions (Hill [51], Hashin [52]): tractions on V  have the form 0

V
 t σ n  where 

0
σ  is a 

constant tensor; 
0
σ  is also called “far-field”, or “remotely applied”, stress; in absence of 

inhomogeneities, it would have been uniform in V . The material is assumed to be linear elastic, 

hence the extra (average over V ) strain due to some inhomogeneity that occupies volume 1V  is a 

linear function of applied stress:  

 01V

V
 ε H :σ , (2.2) 

where H  is a fourth-rank compliance contribution tensor of the inhomogeneity. In the case of 

multiple inhomogeneities, the extra compliance due to their presence is given by 

    1 k k
V

V
  S H , (2.3) 

Alternatively, one can consider the extra average (over V ) stress σ  due to an 

inhomogeneity under uniform displacement boundary conditions (displacements on V  have the 

form 0

V
 u ε n  where 

0
ε  is a constant tensor). This defines the stiffness contribution tensor N  

of an inhomogeneity:  

 01V

V
 σ N :ε , (2.4) 

In the case of multiple inhomogeneities, the extra stiffness due to inhomogeneities is given by  

    1 k k
V

V
  C N . (2.5) 



The H  and N  tensors are determined by the shape of the inhomogeneity and are 

independent of its size; they also depend on elastic constants of the matrix and the 

inhomogeneity. In the framework of the developed software, the N  tensor is calculated from the 

average stress ij m
  inside the inhomogeneity:  

 0 0( ) ( )ijkl kl m ij m ij m
N     , (2.6) 

where 0( )kl m  and 0( )ij m  are prescribed components of strain and stress correspondingly; a total 

amount of six load cases m  is considered: three simple tensile and three simple shear loads in 

the main directions. Similarly, the H  tensor may be found from the average strain ij m
  inside 

the inhomogeneity: 

 0 0( ) ( )ijkl kl m ij m ij m
H     . (2.7) 

Formulas (2.3) and (2.5) highlight the fundamental importance of H  and N  tensors: it is them 

that have to be summed up (or averaged over orientations), in the context of the effective elastic 

properties. The sums properly reflect compliance contributions of individual inhomogeneities. In 

certain cases, a simple geometrical factor (such as volume fraction c , crack density  , or, in 

more complex cases, certain average shape factor, see Section 6) can be taken out of the 

mentioned sums as a multiplier. However, as a rule, this cannot be done for mixtures of diverse 

shapes.  

 In the case of identical shapes, 

 c S H , c C N . (2.8) 

Here 1V
c

V
 , as the volume 1V  of all the inhomogeneities is the same. 

 The H  and N  tensors of an inhomogeneity are, obviously, interrelated. The overall 

compliance tensor of a representative volume containing one inhomogeneity  0

1V VS H  is an 

inverse of its stiffness tensor  0

1V VC N , i.e. their product equals the fourth-rank unit tensor 



implying that  0 0 0

1V V  N C : H :C N : H :C . Since the ratio  1V V  can be made 

arbitrarily small by enlarging V , the second term can be neglected so that: 

 0 0 N C : H :C  (2.9) 

In the case of an isotropic matrix,  

  mmijklmmklijijklklijmmnnijkl HHHHN   00
2

0
2

0  (2.10) 

where 0  and 0  are Lame constants of the matrix.  

3. Methods of calculations. 

In order to calculate numerically the compliance and stiffness contribution tensors H  and N  

for virtually any finite inhomogeneity shape, we consider the mesh free method based on a class 

of Gaussian approximating functions. For the sake of efficiency, we use two different algorithms 

for 3D shapes (solid inclusions and pores) and 2D ones (planar cracks). 

3.1.Solid inclusions and pores. 

Let us formulate the problem in terms of integral equations for strain  xε  and stress  xσ  

fields inside a inhomogeneity that occupies the finite volume 1V  in an infinite elastic medium 

(see, e.g., Kanaun and Levin [53]): 

          
1

10 0

ij ijkl klmn mn ij

V

x K x x C x x dx x        , 
(3.1) 

          
1

10 0

ij ijkl klmn mn ij

V

x S x x S x x dx x        , 
(3.2) 

where  10 1 0x  C C C , 1x V ;  10 0x C , 1x V . Similarly,  10 1 0x  S S S , 1x V ; 

 10 0x S , 1x V . The kernels  xK  and  xS  are calculated from the second derivative of the 

Green function  xG  of the matrix: 



    
  ijkl i k jl ij kl

K x G x      , (3.3) 

      0 0 0

ijkl ijmn mnpq pqkl ijklS x C K x C C x  , (3.4) 

where  x  is Dirac’s delta function; indices in parenthesis mean symmetrization. The 

properties of these kernels were studied in detail by Kanaun [54] and Kunin [55]. 

For the discretization of the integral equations given in (3.1) and (3.2), we take the 

approximate solutions in the following forms: 

 
     ( )

1

N
s s

ij ij

s

x x x  


  , (3.5) 

 
     ( )

1

N
s s

ij ij

s

x x x  


  , (3.6) 

where  
 

s
ε  and  

 

s
σ  are unknown values of strain and stress at the node 

( )sx  (   1  ,2, ,s N  ) of a 

regular grid that covers a cuboid W  that contains the region 1V  occupied by the inhomogeneity, 

N  is the total number of the nodes in W  (Figure 1). 

 

Figure 1. An example of a volume W  of a medium covered by a regular grid of nodes containing an inhomogeneity 

occupying a volume 1V . 



The function ( )x  is the 3D-Gaussian distribution function: 

 

 
 

2

3/2 2

1
exp

x
x

HhH




 
  

 
 

, (3.7) 

where h  is the grid step, H  is a non-dimensional parameter of the order 1. For reliable 

approximations, the condition  2exph L H  , where L  is the characteristic size of the 

inhomogeneity, should be kept (Maz’ya and Schmidt [45]); at the same time, H  cannot be 

higher than  1O , as this will result in very low values of ( )x . Previous experiments have 

shown that the optimal value of 2H  . 

After substituting the solutions (3.5) and (3.6) into the integral equations (3.1) and (3.2), 

correspondingly, we obtain the following systems of linear equations: 

        , 10 0( )

1

,    1, ,
N

r s s s rr

ij ijkl klmn mn ij

s

C r N  


     , (3.8) 

  ( , ) ( ) ( )r s r s

ijkl ijkl x x   ,      10 10 ( )s s

ijkl ijklC C x ,      0 0 ( )s s

ij ij x  , (3.9) 

        , 10 0( )

1

,    1, ,
N

r s s s rr

ij ijkl klmn mn ij

s

S r N  


     , (3.10) 

  ( , ) ( ) ( )r s r s

ijkl ijkl x x    ,      10 10 ( )s s

ijkl ijklS S x ,      0 0 ( )s s

ij ij x  . (3.11) 

The integral operators  xΠ  and  xΓ  are calculated over the entire 3D space R ; this is 

possible due to the fact that Gaussian functions decrease very fast. 

      ijkl ijkl

R

x K x x x dx     , (3.12) 

      ijkl ijkl

R

x S x x x dx     . (3.13) 

These integrals are calculated explicitly (see, e.g., Kanaun and Pervago [56]). Also, the left-

hand side matrices of the systems of linear equations (3.8) and (3.10) have Toeplitz’s structure; 



as a result, only one row and one column must be stored in computer memory. For the numerical 

solution of these systems, Biconjugate Gradient Stabilized Method (BiCGStab) is used. For the 

calculation of matrix-vector products required at every  iteration of BiCGStab, the fast Fourier 

transform technique is applied (see Kanaun [46]). Note that for the inclusions the Young’s 

modulus of which is smaller than the Young’s modulus of the matrix, the equation (3.8) for 

strains converges faster than the one for stresses (3.10), and vice versa (Kanaun and Pervago 

[56]). 

Once either of the systems (3.8) and (3.10) is solved, the compliance and stiffness 

contribution tensors H  and N  are calculated by the procedure described in Section 2 (see (2.6) 

and (2.7)). The average stress ij m
  or strain ij m

  inside the inhomogeneity is calculated 

numerically as the volumetric average of the stress 
 s

ij  and strain 
 s

ij  at the nodes ( )

1

sx V . 

3.2.Planar cracks. 

Let us consider an isolated planar crack with surface   and unit normal n  subjected to an 

external stress 0 ( )xσ ; ( )x   b u u  is the displacement discontinuity vector on   (crack 

opening). The stress field at   can be expressed in the form similar to (3.2) (Kanaun et al. [57]) 

 
       

 

0

ij ij ijkl k lx x S x n bx x xd 


      . (3.14) 

Since crack faces are traction free, the following boundary condition must be satisfied:  

   0i ijn x

 . (3.15) 

The integral equation for the crack opening  ib x  follows from Eqs. (2.1) and (2.4): 

 
     

 

0

k kijl l j j jin S x x n b x d n x


      , (3.16) 

In order to convert the integral equation (3.16) to a system of linear algebraic equations, a 

technique similar to the one developed for 3D inhomogeneities is used. We cover the planar 

rectangular area   that envelops the crack surface   by a regular grid ( )sx  of N  nodes, as 

shown in Figure 2. 



 

Figure 2. A rectangular area   covered by a regular grid of nodes enveloping a planar crack with surface  . 

As in the previous Subsection, for the discretization of the integral equation (3.16), we use 

Gaussian approximating functions centered at the node set ( )sx : 

 
     ( )

1

N
s s

i i

s

x bb x x


   (3.17) 

Here 
( )s

b  are constant vectors (displacement discontinuities at the nodes); for the nodes lying 

outside  , 
( ) 0s b ;  ( )sx x   is the 2D Gaussian function: 

 
 

2

1

2

2

21
exp

h

x
x

H H

x




 
  

 
. (3.18) 

Thus, we obtain a system of linear algebraic equations for components of the vector 
( )s

b :  

      , 0

1

,    1,2, ,
N

p s s p

ij ij

s

I b t p N


   , (3.19) 

        , 0( ) ( ) 0 ( ),   
p s pp s p

ij ij i j jinI I x x t x   . (3.20) 

The integral operator  xI  is calculated over the entire 2D plane P : 

 
     

 

ij k kijl l

P

I x n S x x n x dx    . (3.21) 

As in the case of the integrals (3.12) and (3.13), the integral (3.21) can be calculated 

explicitly (see Kanaun [47]). The solution procedure for the system of equations (3.19) is the 



same as in the case of 3D inhomogeneities. For a crack of arbitrary shape, the tensor H  may be 

related to the calculated crack opening displacement as 

 01 1
( ) ( )  

2
ijkl kl i j j i

V
H n b x n b x d

V V




     . (3.22) 

Similarly to the case of 3D inhomogeneities, the integral in (3.22) is calculated numerically for 

the nodes ( )sx  . 

4. Running the code. 

The main novelty of the current work is the introduction of a user-friendly interface that 

allows one to apply the described numerical method in a simple and intuitive way; screenshots of 

the interface are shown in Figures 3 and 4. In the current state, the developed software allows 

one to calculate the compliance and stiffness contribution tensors H  and N  of an 

inhomogeneity of any of the three types: solid inclusion (default), pore, and crack. The interface 

presents corresponding checkboxes for the latter two cases (Figure 3). Currently, both the matrix 

and the solid inclusions are taken as isotropic only (the fields other than ‘E1’ and ‘v12’ are not 

active). The user may enter the inhomogeneity shape in two ways: by manually typing the 

equation that describes the shape or by importing a stereolithography (.stl) file. 

 

Figure 3. Part of the interface of AMAT software dedicated to the shape input with some sample values 

corresponding to a spherical inclusion. 



In order to improve the precision of the calculations, the user may increase the number of 

discretization intervals, thus, adding grid nodes. It should be noted that very high number of 

discretization intervals in the case of 3D shapes may result in a long calculation time or even a 

random access memory (RAM) overflow. It is possible to visualize the inhomogeneity and the 

node grid that covers it. The convergence tolerance slider defines the convergence criterion for 

the numerical solution of the system of linear equations: (3.8), (3.10), and (3.19), depending on 

the case; lower values may improve the calculation precision. 

 

 

Figure 4. Part of the interface of AMAT software dedicated to the precision adjustment. 

 

The output of the software consists of the H  and N  tensors of the considered inhomogeneity 

given in Voigt notation, i.e., as 6x6 matrices (Figure 5). Optionally, the detailed calculation 

results may be exported as a text (.txt) file.  



 

Figure 5. An example of the output of AMAT software for an oblate spheroidal inclusion. 

 

5. Code validation. 

In order to test the precision and efficiency of the developed software, we have applied it to 

the solution of several well-known problems that either have an explicit analytical solution or 

were solved previously by other numerical methods. The calculations were performed on a 

middle-level Dell Inspiron™ laptop (Intel® Core™ i7-7500U, 8 GB RAM); a user of a more 

advanced computer may expect a considerably better performance.  

5.1.Spheroidal pores and rigid inclusions. 

In the first validation case, we consider the well-known problem of a spheroidal 

inhomogeneity (solve analytically by Eshelby [8]) defined as: 

 22 2

31 2

2 2 2

3

1
xx x

a a a
   , (4.1) 

where a  and 3a  are the semi-axes of the spheroid if 3x  is the axis of symmetry.  

We computed the property contribution tensors for the two most extreme cases of properties 

contrasts: rigid inclusion (with the Young’s modulus of 1000 GPa) and pore (a special case; the 

Young’s modulus contrast is 0.001 with respect to the matrix’, the Poisson’s ratio is 0.001). The 

Young’s modulus of the matrix was assumed to be 1 GPa. Note that the results may be easily 



scaled to any realistic value multiplying the obtained property contribution tensors by the desired 

Young’s modulus provided that the Poisson’s ratio is the same. For the current computations, the 

Poisson’s ratio of the matrix and the rigid inclusions was equal to 0.3. In both cases, we have 

considered oblate (
3a a ) and prolate (

3a a ) spheroids (Figure 6). 

 

Figure 6. Oblate (left) and prolate (right) spheroidal inhomogeneities visualized by AMAT software. 

The number of discretization intervals M  on the side of the volume W  was assumed to be 

40 and 80 for the sphere which is the limiting case of spheroid. When the spheroidal 

inhomogeneity became more oblate/prolate, the number M  was increased to maintain the total 

number of nodes covering the inhomogeneity constant. The calculation results are given in 

Figures 7 and 8. Since the resulting compliance and stiffness contribution tensors are 

transversally isotropic, only five independent non-zero components of contribution tensors are 

given in Figure 7 and 8, namely 1111, 3333, 1122, 1133, and 1212. Here the ratio 3a a   for 

oblate spheroids and 
3

a a   for prolate ones. 



 

 

 

Figure 7. Components of the compliance contribution tensor of an oblate/prolate pore a) 1111H , b) 3333H , c) 1122H , 

d) 1133H , e) 1212H  as functions of the ratio  . 



 

 

 

Figure 8. Components of the stiffness contribution tensor of an oblate/prolate rigid inclusion a) 1111N , b) 3333N , c) 

1122N , d) 1133N , e) 1212N  as functions of the ratio  . 



It may be noted that in the case of 80M   the difference between the analytical and 

numerical solutions does not exceed 2% for the majority of cases, with the exception of extreme 

cases when 0.1  . The calculation CPU time was about 40 minutes. For 40M   the accuracy 

of the results is still acceptable, as it does not exceed 5% for most cases; however, the calculation 

time decreased to about 10 minutes. Also, we should note that the results for very oblate pores (

0.05  ) are very close to the results obtained for a penny-shaped crack. 

5.2. Elliptical cracks. 

The next validation case involves another well-known problem of an elliptical crack (see, 

e.g., Kanaun and Levin [53]), the surface of which (Figure 9) is defined as 

 2 2

1 2

2 2

1 2

1
x x

a a
  , (4.2) 

where 1a  and 2a  are the semi-axes of the ellipse; 1 2a a . 

 

Figure 9. Elliptical crack visualized by AMAT software. 

Similarly to the previous problem, the Young’s modulus of the matrix was assumed to be 1 

GPa and the Poisson’s ratio was 0.3. For this problem, only the components 1133, 2233, and 

3333 of the compliance contribution tensor are independent and are non-zero. The number M  of 

discretization intervals was equal to 200 due to the fact that the planar crack problem is two-

dimensional and, thus, the solution is much faster. The calculation results are given in Figure 10 

where 2 1
a a  . 



 

Figure 10. Components 
1133H , 

2233H , and 
3333H  of the compliance contribution tensor of an elliptical crack as 

functions of the ratio  . 

The comparison of the numerical and analytical solutions has shown that the difference 

between them does not exceed 2.5% for the absolute majority of cases, with the exception of 

extremely narrow cracks ( 0.1  ). The calculation CPU time was around 8 seconds. 

5.3.Rigid toroidal inclusions. 

In the next validation step, we considered the toroidal rigid inhomogeneity which has a more 

complex shape as compared to the spheroid. The analytical results for the property contribution 

tensors were obtained by Krasnitskii et. al. [18]. The surface of toroid (Figure 11) is described by 

the following equation: 

    
2

2 2 2 2 2 2 2 2

1 2 3 1 24 0x x x R a R x x       , (4.3) 

where R  is the distance from the center of the torus to the center of the torus, and a  is the radius 

of the tube. 



 

Figure 11. Torus visualized by AMAT software. 

The results are obtained by considering the Young’s modulus of the matrix was equal to 1 

GPa that corresponds to the normalized results of Krasnitskii et. al. [18] and the Poisson’s ratio 

was equal to 0.3. As the resulting stiffness contribution tensor is transversally isotropic, only the 

non-zero and independent components are given, namely 1111, 3333, 1122, 1133, and 1212. The 

number M  of discretization intervals on the side of the volume W  was taken equal to 40 and 80. 

The comparison of the predictions obtained by the AMAT software with the analytical results 

given is shown in Figure 12 where a R  . 



 

Figure 8. Components of the stiffness contribution tensor of a toroidal inclusion a) 1111N , b) 3333N , c) 1122N , d) 

1133N , e) 
1212N  as functions of the ratio  . 

Similarly to the previous problems, the difference between the analytical and numerical 

solutions does not exceed 2.5% for 80M   and 5% for 40M  . The calculation CPU times was 

about 25 minutes in the case 80M   and 5 minutes in the case 40M  . 



5.4.Pores of irregular shape. 

In order to complete the validation procedure, we compared our predictions of property 

contribution tensors against the FEM results obtained by Drach et al. [40] for the case of 

“irregularly” shaped (non-ellipsoidal) pore. The shape was imported by using the original .stl file 

(Figure 13).  

 

Figure 13. An irregular shape visualized by AMAT software. 

The Young’s modulus of the matrix was assumed to be 1 GPa so that the results would 

correspond to the normalized results of Drach et al. [40] listed in Table 3 and the Poisson’s ratio 

was equal to 0.3. The results obtained by the AMAT software are given in Tables 1 and 2. 

1.467 -0.400 -0.458 0.003 -0.063 -0.112 

-0.400 2.196 -0.688 -0.025 0.016 -0.062 

-0.458 -0.688 3.452 -0.028 -0.060 0.059 

0.003 -0.025 -0.028 7.378 -0.198 -0.155 

-0.063 0.016 -0.060 -0.198 6.332 -0.050 

-0.112 -0.062 0.059 -0.155 -0.050 4.534 

Table 1. Compliance contribution tensor of the irregularly shaped pore used by Drach et al. [40] calculated by using 

the AMAT software and 80M  . The results are given in 1/GPa. 

 

 

 



1.438 -0.392 -0.446 0.003 -0.062 -0.107 

-0.392 2.135 -0.664 -0.024 0.015 -0.060 

-0.446 -0.664 3.361 -0.028 -0.058 0.055 

0.003 -0.024 -0.028 7.069 -0.185 -0.147 

-0.062 0.015 -0.058 -0.185 6.121 -0.049 

-0.107 -0.060 0.055 -0.147 -0.049 4.416 

Table 2. Compliance contribution tensor of the irregularly shaped pore used by Drach et al. [40] calculated by using 

the AMAT software and 160M  . 

1.408 -0.383 -0.433 0.028 0.036 -0.146 

-0.383 2.065 -0.635 -0.026 -0.020 -0.130 

-0.433 -0.635 3.260 -0.076 -0.158 0.084 

0.028 -0.026 -0.076 6.756 -0.084 -0.140 

0.036 -0.020 -0.158 -0.084 5.912 -0.024 

-0.146 -0.130 0.084 -0.140 -0.024 4.288 

Table 3. The compliance contribution tensor of the irregularly shaped pore calculated by Drach et al. [40]. The 

results are given in 1/GPa. 

One may note that the difference between the principal components of the compliance 

contribution tensor calculated by FEM and the AMAT software is about 2-3% in the case of 

160M   and 4-6% for 80M  . Meanwhile, the calculation CPU times were about 1 hour and 

15 minutes, respectively.  

 

6. Concluding remarks. 

We have developed an open access program named AMAT to calculate compliance and 

stiffness contribution tensors for inhomogeneities of arbitrary shape that may be described either 

by explicit equation or graphically using .stl file. The software was tested and runs reliably on 

Windows operating systems, no additional installations were required. Calculations are done 

using mesh free numerical method based on a class of Gaussian approximating functions 

developed by Kanaun  [46], [47]. Compliance and stiffness contribution constitute the basic 

building block for calculation of the overall elastic properties of heterogeneous materials 

(Kachanov and Sevostianov [50]). Presently, only limited number of results is available for 3-D 

inhomogeneities of irregular shape which complicates the procedure of evaluation of the 

effective elastic properties of materials containing non-ellipsoidal inhomogeneities. Our program 

fills this gap and simplifies the homogenization technique for materials with irregular 

microstructure. We illustrated the application of the program on several examples. First, to 



illustrate the accuracy of the code, we considered spheroidal inhomogeneity and elliptical crack 

for which explicit analytical solutions are known. Then, we considered toroidal inhomogeneity 

and compared the result with analytical solution of Krasnitskii et al. [18] for a rigid torus 

obtained in the form of infinite series. Finally, we showed how the program can be applied to 

inhomogeneities of irregular shape described graphically. In its present version, the program 

works with isotropic materials only. In the future, we plan to extend the program to calculate 

property contribution tensors of inhomogeneities embedded in anisotropic matrices (Kanaun 

[58]), to extend the code to (simpler) conductivity problem (Kanaun and Babaii [59]), and to 

develop a block for calculation of the overall properties of inhomogeneous materials using 

various homogenization techniques (Markov and Kanaun [60], [61]). The latest version of the 

software can be downloaded from the website of NMSU Center for Micromechanics 

https://centerformichromechanics.nmsu.edu. 
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